本文目录
1、先说重要的,出来工作嘛,主要是为了薪酬。我在这个职能做了也已经三年多了,期间也接触了不少外部机会。总的来说薪酬并不比业务分析方向差,起步薪酬甚至比业务数据分析好的不是一点半点。主要原因,一是目前市场上这个方向的数据分析师很少,供不应求;二是有需求这个职位的基本都是大公司,在华员工数打底两千人以上,或者千人以上并处于急速扩张中的,本身这种类型企业的薪酬就不会太差。但是目前的问题在于,起步价不低,可是封顶也不高。这个我会在下面职业发展一块详细来说。不过封顶这事情吧,你没到一定级别还是不需要考虑太多的。
2、以前我是做业务方向的,基本上都是个人直线或者所在部门直线汇报给业务老大(GM-1)。这种情况下你可以在自己岗位按部就班的晋升到老大以下的最高级别,总体发展态势还是不错的。
3、而HR就有点特殊了。国内很多公司(无论国企外企),人力资源分析都处于起步阶段,定位就没有那么明确,汇报线也是千奇百怪。多数公司的HR都是按照三支柱理论,分为业务伙伴(HRBP)、专家(COE)和共享服务中心(SSC)。常见的一种情况是人力资源数据分析被划在了SSC(三个支柱中最底层,员工最junior的),原因是HR所有数据都产生于SSC。顺理成章的,因为数据产生于SSC,所以数据分析师需要汇报给SSC的头儿(GM-2)或者是SSC分管非工资、非流程的“杂务”的头儿(GM-3)。从职业发展上来看,你的上限比业务分析低了一到二层,有一定的“外行领导内行”的风险。如果要进一步发展,你几乎都不得不承担其他莫名其妙的杂务。我曾经收到过某个知名外企电话,招聘的数据分析岗位居然同时需要帮助上海员工办理社保,并处理外籍员工的公司股票购买事务(外汇、税务什么的),简直莫明其妙。不过好在目前我的公司发现了这个问题,正在逐步使数据分析脱离SSC序列,转为专家一类的独立部门。相信随着数据分析价值的体现,越来越多的公司会发生这样子的转型。如此这般,人力资源数据分析从业者的上限将会被打开,甚至将会成为未来HR Head职位的角逐者之一。
4、相比业务数据分析师而言,HR的数据分析师工作并不简单,多数情况下甚至还更加繁杂。
5、一是HR部门对于数据的意识不如业务部门高,历史数据的质量很差,初期你会不得不投入很大精力去完善数据保存,甚至是研究流程,乃至帮助流程管理方去提高流程数据的质量。
6、二呢,不是我抱有偏见,HR部门是个比较浮的部门,很喜欢fancy的东西,搞个大新闻。你一入职就会希望你能拿出一些很炫的产出(dashboard啊、离职预测啊什么的),你得要不断的说服他们先去清理历史数据,积攒一段时间的数据。三是普遍来看,现在的HR对于数据的认识远不如业务。你别老看他们培训时候张口闭口的change mindset(拥抱变化的思维),在自己的职能方向,HR的思维是非常固化的。我就亲眼见过群里从讨论AI和数字化时代在不到十分钟里变成了“HR的职能依靠沟通和经验,是不可能被数字化工具和AI取代的”(黑人问号.jpg)。我还见过不少HRBP在入职两年以后连离职率公式都不知道的。(讲到KPI公式,这是一个大坑,离职当天的人算不算当天的员工数、试用期通过率用延迟计算公式还是即时计算公式,作为数据分析师都会头大,遑论HR们了。)
7、不过,数据意识不强这一点也有好处,那就是他们不会拘泥于每一个数字细节,大方向差不多就成了。熟悉我的朋友都知道,我以前做业务分析时候,老板是个浆糊阿三,但是他特别喜欢抠数字,我的收入总数和财务差了一分钱人民币都会叫我查一下差异的原因在哪里(基本都是汇率的保留小数位数问题)。在HR部门,这种蠢事会相对较少一点(如果你们公司global团队不那么愚蠢的话)。
8、基本上,作为HR数据分析师,你和外部门关系本该只是一个数据出口。但是获取数据的人不会这么认为,他们会觉得数据有错了找你就行了,你不仅应该知道错在哪里,而且应该负责把他改正了。不过这个问题也不仅是HR分析存在的问题吧,但凡做数据的岗位,都会被这个问题困扰。
9、项目其实是HR数据分析的一个难点。因为习惯或者文化问题,你的客户很少会在遇到困难时想到用数据分析的方法去定位和解决问题。HRBP们更喜欢凭自己的经验,收集一些特例并无限放大特例的普遍性,来寻找和解决“问题”。不能说这个方法完全无效,但是这样子的思维很不利于数据分析文化的普及。
10、还有一些项目,比如离职预测、职位匹配等等,很新潮、容易吸引眼球,再加上HR的宣传能力,套上AI啊、大数据什么的包装,宣传效果一级棒。所以HR喜欢花钱做这种项目。不过往往最后建模什么的不那么难,但在实际应用时候会遇到阻碍。比如预测离职,你能把风险用户直接给直线经理吗?(以现在经理的素质,你都不知道人最后走了是模型准还是被经理逼走了。)比如职位匹配,很多直线经理会极度反感你们给员工提供内部职位的机会。怎么去应用项目,永远永远是最大的问题。
1、帮助企业从人力资源应用的角度构建符合企业实际需求的 DAR(数据分析报告),找到评价组织及人力资源效能的核心数据,借助简单好用的数据分析工具提高数据分析效率,通过数字化人力资源管理最佳实践赋能,找到适合企业的数字转型之路,同时为人力资源管理工作提供数据支持和决策
2、初级——能熟练运用数字化管理系统,独立完成人力资源各模块工作的数据收集、数据处理、数据分析工作;能胜任企业人力资源事务性服务与常规工作。
3、中级——能运用数据收集、数据处理、数据分析设计完成企业人力资源管理工作和企业业务发展支持工作,能够独立处理工作中出现的问题;能够与他人合作;能够指导和培训初级人力资源数据分析师。
4、高级——能提供人力资源统筹、规划、设计、管理,为企业经营、战略、风险等决策并提供决策数据支持;能够独立处理和解决人力资源管理中的难题;能够指导和培训初、中级人力资源数据分析师的工作;能够组织开展人力资源数据分析工作的流程改善和技术优化;能够组织开展系统的专业技术培训;具有技术管理能力和团队管理能力;能把握企业人力资源方向、控制风险,提升经营管理效率,赋能企业业务及产品,为组织蛛网式发展提供人才核心竞争力。
1、及格条件:通过率没有具体要求,只要成绩 60分合格者就可以拿到证书
2、考试内容:请参照工业和信息化部教育与考试中心《人力资源数据分析师》能力等级评价标准里课程大纲设置的内容
3、--具备以下条件之一者,可申报初级:
4、1)累计从事本职业或相关职业工作 1年(含)以上。
5、--具备以下条件之一者,可申报中级:
6、1)取得本职业或相关职业初级职业能力等级评价证书(含职业资格证书、职业技能等级证书)后,累计从事本职业或相关职业工作 2年(含)以上。
7、2)累计从事本职业或相关职业工作 4年(含)以上。
8、3)取得以中级技能为培养目标的中等职业学校本专业或相关专业毕业证书。
9、--具备以下条件之一者,可申报高级:
10、1)取得本职业或相关职业中级职业能力等级评价证书(含职业资格证书、职业技能等级证书)后,累计从事本职业或相关职业工作 3年(含)以上。
11、2)累计从事本职业或相关职业工作 6年(含)以上。
12、3)具有高等职业学校、高级技工学校、技师学院本专业或相关专业毕业证书,并取得本职业或相关职业中级职业能力等级评价证书(含职业资格证书、职业技能等级证书)。
13、4)具有大专及以上本专业或相关专业毕业证书,并取得本职业或相关职业中级职业能力等级评价证书(含职业资格证书、职业技能等级证书)后,累计从事本职业或相关职业工作 1年(含)以上。